

To protect space assets from high energy particles by developing European dynamic modelling and forecasting capabilities www.fp7-spacecast.eu

- New 3 year FP7 collaborative project
- Focus on high energy charged particles
- 7 European partners
- 4 US partners

SPACECAST – Forecast the whole Rad Belt

- Collect real time data from ACE and GOES, the British Geological Survey, and a forecast of Kp from Lund, Sweden
- Data combined with a database at DHC in Belgium
- Distributed to modelling centres in Cambridge UK, Toulouse, France
- Models run every hour and forecast electron flux 3 hours ahead, a 24 hr electron fluence, and a risk index for internal charging
- Results displayed via web site hosted in Belgium, updated every hour
- Fully automated, available since March 2012

SPACECAST – Forecast the whole RB

Losses due to wave-particle interactions – form the slot region

SPACECAST - Forecast >800 keV electrons

SPACECAST > 2 MeV Electrons

NATURAL ENVIRONMENT RESEARCH COUNCIL

March 2012

Forecast in red data in blue

Uses

Physics based model - we can:

- Predict what is likely to happen in the next few hours
- Results for orbits where there are no data
- Calculate average and extreme conditions
- Reconstruct what happened in the past for satellite anomalies
- Calculate particles precipitating into the atmosphere

Conclusions

- SPACECAST makes real time forecasts of the radiation belts for satellite operators
- Will issue warnings and alerts to stakeholders
- Models solar energetic particle events to help develop forecasts
- Pre-operational, freely available
- Would like feedback on what information you need, displays, thresholds...
- The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 262468

Flux drop outs

Flux drop outs

Satellite Anomalies – When SW Conditions Disturbed

- 20th Jan 1994 Intelsat 4, Anik E1 and Anik E2
 - Intelsat 4 and Anik E1 were recovered in a few hours
 - Anik E2 Loss of service for 6 months
- 11th January 1997
 - Telstar 401 Total loss Insurance payout \$132m
- 19th May 1998
 - Galaxy IV Total loss Insurance payout \$165m
- 23rd Oct to 6th Nov 2003
 - 47 satellites reported malfunctions
 - Midori 2 Total loss US\$640m scientific satellite
- 5th Apr 2010
 - Galaxy 15 Loss of service for 9 months drifted around GEO interference and risk of collision
- 7th March 2012,
 - Sky Terra 1 Safe mode, loss of service for a few days
- Very difficult to say if Space Weather was the cause

BAS Radiation Belt Model

Magnetopause - Shue Model

Conclusions

- SPACECAST makes real time forecasts of the radiation belts for satellite operators
- Will issue warnings and alerts to stakeholders
- Models solar energetic particle events to help develop forecasts
- Pre-operational
- Scope to improve radiation belt forecasts via research
- Scope to link to atmosphere, ionosphere and solar wind to forecast other aspects of space weather

